Maximal Cohen–Macaulay modules that are not locally free on the punctured spectrum
نویسندگان
چکیده
منابع مشابه
Hyperbolic Sets That are Not Locally Maximal
This papers addresses the following topics relating to the structure of hyperbolic sets: First, hyperbolic sets that are not contained in locally maximal hyperbolic sets. Second, the existence of a Markov partition for a hyperbolic set. We construct new examples of hyperbolic sets which are not contained in locally maximal hyperbolic sets. The first example is robust under perturbations and can...
متن کاملModules in Resolving Subcategories Which Are Free on the Punctured Spectrum
Let R be a commutative noetherian local ring, and let X be a resolving subcategory of the category of finitely generated R-modules. In this paper, we study modules in X by relating them to modules in X which are free on the punctured spectrum of R. We do this by investigating nonfree loci and establishing an analogue of the notion of a level in a triangulated category which has been introduced ...
متن کاملMULTIPLICATION MODULES THAT ARE FINITELY GENERATED
Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$ there exists an ideal $I$ of $R$ such that $N = IM$. It is shown that over a Noetherian domain $R$ with dim$(R)leq 1$, multiplication modules are precisely cyclic or isomorphic to an invertible ideal of $R$. Moreover, we give a charac...
متن کاملON THE MAXIMAL SPECTRUM OF A MODULE
Let $R$ be a commutative ring with identity. The purpose of this paper is to introduce and study two classes of modules over $R$, called $mbox{Max}$-injective and $mbox{Max}$-strongly top modules and explore some of their basic properties. Our concern is to extend some properties of $X$-injective and strongly top modules to these classes of modules and obtain some related results.
متن کاملGroups whose locally maximal product - free sets are complete
Let G be a finite group and S a subset of G. Then S is product-free if S ∩ SS = ∅, and complete if G∗ ⊆ S ∪ SS. A product-free set is locally maximal if it is not contained in a strictly larger product-free set. If S is product-free and complete then S is locally maximal, but the converse does not necessarily hold. Street and Whitehead [11] defined a group G as filled if every locally maximal p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2020
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2020.106311